Diastereoselective Reduction of Acyclic N-Aryl-β-amino Ketones

R. A. Pilli, D. Russowsky, and L. C. Dias

Universidade Estadual de Campinas, Instituto de Química, C.P. 6154, 13081 Campinas, SP, Brasil

A stereoselective route to *anti*- and *syn*-*N*-aryl- γ -amino alcohols is reported featuring the reduction of the corresponding β -amino ketones with Et₃BHLi or Zn(BH₄)₂, respectively.

Recently, we reported a mild and efficient method for preparing *N*-aryl- β -amino ketones (1) through trimethylsilyl trifluoromethanesulphonate (TMSOTf) promoted addition of silyl enol ethers to Schiff bases.¹ Because of the interest in γ -amino alcohols as building blocks both in the total synthesis of natural products² and pharmaceuticals,³ we have initiated a systematic study of the experimental and structural features controlling the diastereoselective reduction of acyclic *N*-aryl- β -amino ketones (1), (see Scheme). Our preliminary results are reported herein.

Earlier, the LiAlH₄ reduction of primary and secondary β amino ketones unsubstituted at the α position was described as a non-stereoselective route to γ -amino alcohols while tertiary β -amino ketones showed modest diastereoselection leading preferentially to the *syn* isomer.⁴ This result was rationalized through polar or cyclic models of asymmetric induction.⁵

† Reduction of (1a) with LiAlH₄ in THF at -78 °C yielded a 30:70 mixture of (2a): (3a). The major isomer showed an upfield shift for the asymmetric carbons⁸ [(2a): δ 59.53 and 79.45; (3a): δ 55.21 and 76.20

ppm)] and the corresponding urethane (5a) showed the CHN proton at δ 5.15 (J 5.0 and 2.0 Hz) while in (4a) it appeared at δ 4.95 (J 12.0 and 6.0 Hz).⁹

Recently, Narasaka *et al.*⁶ achieved high diastereoselection in the LiAlH₄-NaOMe reduction of the *O*-benzyl oximes derived from β -hydroxy ketones.

Although poor diastereoselection was expected from earlier attempts with LiAlH₄,[†] most relevant to our study was the sense of induction observed. The predominance of the *anti* configuration was not at all consistent with the reduction taking place through a cyclic intermediate.⁷ Several metallic hydrides were then evaluated [*e.g.* LiAlH₄, LiBH₄, (Bu^tO)₃AlHLi and Et₃BHLi] and the highest *anti* induction was observed when a bulky reducing agent less able to promote the formation of a cyclic intermediate (*e.g.* Et₃BHLi in THF–ether, at -78 °C) was employed.

As shown in the Table, the level of diastereoselection proved to be dependent on the bulkiness of the R¹ group: while a preparatively useful diastereoisomeric ratio was achieved for tbutyl and phenyl β -amino ketones (1), it dropped significantly when less bulky R¹ groups were employed (*e.g.* isobutyl). However, an increase in the diastereoisomeric ratio was again observed in the reduction of methyl β -amino ketones.

These results can be rationalized through conformation A which features the C(2)–C(3) bond perpendicular to the C=O plane and the Ar² group blocking either the carbonyl *Si* face (when $R^1 = Bu^t$, Ph, and Prⁱ) or its *Re* face (when $R^1 = Bu^i$ and Me). **B** should be a less stable conformation owing to the steric hindrance developed when Ar¹ is forced close to the R¹ group.

At this point, we reasoned that a reducing agent able to coordinate both to the carbonyl and to the secondary nitrogen would lead to the syn γ -amino alcohol (2) since hydride Si approach to the Zn²⁺-chelated intermediate C is expected to be favoured both on steric and electronic grounds when R¹ = Bu^t, Ph, and Prⁱ while the hydride Re approach is expected when R¹ = Buⁱ and Me. This expectation was born out when Zn(BH₄)₂ was employed ⁹ and the γ -amino alcohol (2) was obtained as the major diastereoisomer.

The results described herein are a promising entry into the stereoselective synthesis of both the syn and anti series of γ -amino alcohols and studies are underway to evaluate this methodology in the stereoselective reduction of N-alkyl β amino ketones.

Experimental

General Procedure for the Et₃BHLi Reduction of β -Amino Ketones (1).—To a stirred solution of the β -amino ketone (1) (0.5 mmol) in THF (3 ml), at -78 °C and under nitrogen

Table. 1,3-Diastereoselection in the reduction of β -amino ketones (1).^{*a,b*}

ß Amino			Ar ²	(2)	:(3)
ketone (1)	R ¹	Ar ¹		$\widetilde{\text{LiBH}(\text{C}_2\text{H}_5)_3}$	$Zn(BH_4)_2$
2	Bu ^t	Ph	Ph	18:82	82:18
Ь	Bu'	Ph	p-ClC ₆ H ₄	17:83	83:17
с	But	$p-NO_2C_6H_4$	Ph	17:83	84:16
d	Ph	Ph	Ph	17:83	83:17
e	Ph	Ph	p-ClC ₆ H ₄	13:87	86:14
f	Ph	o-NO ₂ C ₆ H ₄	Ph	17:83	83:17
g	Pri	Ph	Ph	17:83	83:17
ĥ	Pr ⁱ	Ph	p-ClC ₆ H₄	20:80	83:17
i	Pr ⁱ	p-NO ₂ C ₆ H₄	Ph	20:80	86:14
j	Bu ⁱ	Ph	Ph	34:66	86:14
k	Bu ⁱ	Ph	p-ClC ₆ H₄	34:66	86:14
1	Bu ⁱ	$p-NO_2C_6H_4$	Ph	34:66	83:17
m	Me	Ph	Ph	25:75	70:30
n	Me	Ph	p-ClC ₆ H ₄	14:86	66:34
0	Me	$p-NO_2C_6H_4$	Ph	20:80	75:25

^a Diastereoisomeric ratio determined in the crude mixtures by ¹H NMR (80 MHz), except entries (1d-f) where it was evaluated by ¹³C NMR (25.01 MHz). ^b Yields of the crude γ -amino alcohols >90%. Major diastereoisomer isolated by fractional recrystallization or column chromatography. Spectral and elemental analytical data are in accordance with the proposed structures.

atmosphere, was added dropwise a 1.0M solution of Et_3BHLi in THF (1.0 ml, 1.0 mmol). After 2 h at -78 °C, the reaction was quenched by addition of water (2 ml) and allowed to warm to room temperature.

After extraction with ether $(3 \times 2 \text{ ml})$, the combined organic phases were washed with brine $(2 \times 2 \text{ ml})$, dried (MgSO₄), and evaporated under reduced pressure. Fractional crystallization of the residue from dichloromethane-hexane or column chromatography on silica and elution with hexane-ether (95:5, v/v) afforded the pure *anti*- γ -amino alcohol (3).

General Procedure for the $Zn(BH_4)_2$ Reduction of the β -Amino Ketones (1).—To a stirred solution of the β -amino ketone (1) (0.5 mmol) in THF (3.0 ml), at 0 °C and under a nitrogen atmosphere, was added dropwise a 0.16M ethereal solution of $Zn(BH_4)_2$ (6.25 ml, 1.0 mmol). After 2 h at 0 °C, the reaction was quenched with saturated aqueous NH₄Cl (2.0 ml). After extraction with ether (3 × 2 ml), the combined organic phases were washed with brine (2 × 2 ml), dried (MgSO₄), and evaporated under reduced pressure. Fractional crystallization of the residue from dichloromethane-hexane or column chromatography on silica and elution with hexane-ether (95:5, v/v) afforded the pure *syn*- γ -amino alcohol (2).

Acknowledgements

The authors acknowledge financial support from IFS (Sweden), Fapesp, CNPq, and Finep (Brazil).

References

- 1 R. A. Pilli and D. Russowsky, J. Chem. Soc., Chem. Commun., 1987, 1053.
- 2 V. Jäger, W. Schwab, and V. Buss, Angew. Chem., Int. Ed. Engl., 1981, 20, 601.
- 3 A. Pohland and H. R. Sullivan, J. Am. Chem. Soc., 1953, 75, 4458; ibid., 1955, 77, 3400.
- 4 For a review on synthesis of amino alcohols through reduction of amino carbonyl compounds, see: M. Tramontini, *Synthesis*, 1982, 605 and references cited therein.
- 5 C. Fouquey, J. Jacques, L. Angiolini, and M. Tramontini, Tetrahedron, 1974, 30, 2801.
- 6 (a) K. Narasaka, S. Yamazaki, and Y. Ukaji, Chem. Lett., 1984, 2065; (b) K. Narasaka, Y. Ukaji, and S. Yamazaki, Bull. Chem. Soc. Jpn., 1986, 59, 525.
- 7 G. J. McGarvey, J. M. Williams, R. N. Hiner, Y. Matsubara, and T. Oh, J. Am. Chem. Soc., 1986, 108, 4943.
- 8 V. Jäger and V. Buss, Liebigs Ann. Chem., 1980, 101.
- 9 J. Barluenga, B. Olano, and S. Fustero, J. Org. Chem., 1985, 50, 4052.

Paper 9/04271G Received 5th October 1989 Accepted 10th January 1990